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Outline of the presentation

I (Day-ahead) decision making in power systems
I Conventional security-constrained optimal power flow

(SCOPF)
I Uses, problem formulation and features
I Some challenges to SCOPF problem solution

I Methodologies to reduce the huge problem size
I Methods for the core optimizer (local vs convex relaxations)

I SCOPF under uncertainty
I Robust optimization approach

I Risk-based SCOPF

I Conclusions and outlook
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Stages of decision making in power systems
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Stages of decision making in power systems

I grid planning (years ahead of operation)
I accurate optimization tools with no special solution time

constraints

I grid maintenance planning (years/months ahead of operation)
I accurate optimization tools with no special solution time

constraints

I . . .
I operational planning (day-ahead of operation)

I accurate optimization tools with stringent solution time
constraints (few minutes to one hour)

I real-time operation
I very fast optimization tools using reasonable approximate

models (solution desired between few seconds and 15 minutes)
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Day-ahead operational planning

I aim: for each anticipated state of the next day the system
must operate at minimum cost while being able to withstand
the loss of any single equipment (N-1 security criterion)
I ensure a stable transition towards a viable equilibrium point

I very complex optimization problem:
I multi-period optimization (solution coupled over 24 hours

including usually 24/48 states)
I very large scale (consider a large number of contingencies)
I nonlinear algebraic and differential equations (model the

system behaviour for postulated contingencies)
I with a large number of variables (binary, discrete, and

continuous)
I stringent solution time requirements (less than 1 hour) !
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Day-ahead operational planning

problem decomposition in sequential sub-problems
(trade off economics/affordability and security/reliability):

I (market-based) unit commitment: determines the status
on/off of generators for each period of time and the
generators active power according to their bids
I very large MILP problem

I SCOPF: determines cost-optimal preventive/corrective
control actions to satisfy static security constraints
(thermal & voltages) for the 24 anticipated operation states
of the power system for the next day
I very large MINLP problem

I time-domain (dynamic) simulation: check system stability
for the postulated contingencies
I numerical integration of dynamic phenomena with different

time scales (e.g. miliseconds to minutes)
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Conventional (deterministic) SCOPF
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SCOPF uses

I essential tool in power systems planning, operational planning
and real-time

I part of Energy Management System (EMS) in control centers
(together with state estimation, time domain simulation, etc.)

I in some systems the SCOPF is used to price electricity by
means of locational marginal prices (LMPs)
I uses a linear (DC) grid model since solution must be provided

in real-time (i.e. few minutes)
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Conventional (deterministic) SCOPF formulation

min
x0,...,xc ,u0,...,uc

f (x0,u0)

s.t. g0(x0,u0) = 0 ← base case constraints

h0(x0,u0) ≤ 0 ← base case constraints

gk(xk ,uk) = 0 k = 1, . . . , c ← contingency k constraints

hk(xk ,uk) ≤ 0 k = 1, . . . , c ← contingency k constraints

|uk − u0| ≤ ∆umax
k k = 1, . . . , c ← “coupling” constraints

I x - state/dependent variables:
magnitude V and angle θ of complex voltage at all buses

I u - continuous and discrete control variables:
generator active power, terminal voltage, transformer ratio,
phase shifter angle, shunt capacitors/reactors reactive power
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Preventive and corrective modes; OPF vs SCOPF
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Features and challenges of the SCOPF problem

I nonlinear: includes power flow equations and other nonlinear
inequality constraints

I non-convex: includes power flow equations and bounds on
other nonlinear inequality constraints

I with continuous and discrete variables
I static: refers to a single operating point in time
I large scale: the SCOPF problem for a 3000-bus system and

999 contingencies contains:
around 2000 x 3000 = 6.000.000 equality constraints
around 6000 x 3000 = 18.000.000 inequality constraints
around 1000 x 3000 = 3.000.000 control variables

I academia simplifies SCOPF to a large scale MINLP
I intractable on a normal computer due to memory limitation !
I scalable decomposition is essential as a limited number of

constraints are binding
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SCOPF decoupling: active power vs. reactive power

Under normal operating conditions generally:

I active power flows are weakly coupled with voltage
magnitudes V

I reactive power flows are weakly coupled with voltage angles θ

active power reactive power

generator active power generator terminal voltage
phase shifter angle transformer ratio

control MW scheduled transfers shunt reactor/capacitor
variables network topology

load curtailment
generator start-up/shut-down

constraints branch current voltage limits
active power flows reactive power flows

objective min generation cost min power losses
function min controls deviation max reactive power reserves
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SCOPF decomposition methodology

master problem optimizer 

(MPO)

slave problem 1 optimizer 

(SPO1)

slave problem K optimizer 

(SPOK)

management of 

discrete variables

(MDV)

security analysis 

(SA) 

contingency filtering 

(CF)

optimization

problem 

decomposition

if not converged 
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SCOPF problem decomposition: state-of-the-art

I Most severe contingencies together
(Brian Stott and Ongun Alsac, since 1974)

I Benders decomposition for preventive-corrective SCOPF
(A. Monticelli, M. Pereira, S. Granville - 1987)

I All potentially binding contingencies together
(ULg, since 2007)
I with post-contingency network compresion

(ULg/GDF Suez - 2014)

I Adaptive Benders decomposition
(D. Phan et al. - 2014)

I Alternating direction method of multipliers
(D. Phan et al. - 2014)

I Along interior-point method structure
(Q. Jiang et al. - 2014)
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SCOPF decomposition: for further reading

[1] F. Capitanescu
Critical review of recent advances and further developments needed in AC
optimal power flow, Electric Power Systems Research 136, 57-68
[2] B. Stott, O. Alsac
Optimal power flow - basic requirements for real-life problems and their
solutions (White Paper), SEPOPE XII Symposium, Brazil, 2012
[3] L. Platbrood, F. Capitanescu, C. Merckx, H. Crisciu, L. Wehenkel
A Generic Approach for Solving Nonlinear-Discrete Security-Constrained
Optimal Power Flow Problems in Large-Scale Systems,
IEEE Trans. Power Syst. 29 (3) (2014) 1194-1203
[4] D. Phan, J. Kalagnanam
Some efficient methods for solving the security-constrained optimal power flow
problem,
IEEE Trans. Power Syst. 29 (2) (2014) 863-872
[5] Q. Jiang, K. Xu
A novel iterative contingency filtering approach to corrective
security-constrained optimal power flow,

IEEE Trans. Power Syst. 29 (3) (2014) 1099-1109
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Solution methods for the NLP core optimizer

If discrete variables are fixed or assumed continuous then
SCOPF becomes a nonlinear programming (NLP) problem

local optimizers: (at least) local optimum solution

I 1968: gradient method (H. Dommel and W. Tinney)

I 1973: sequential linear programming (O. Alsac and B. Stott)

I 1973: sequential quadratic programming
(G. Reid and L. Hasdorf)

I 1984: Newton method (D. Sun et al.)

I 1994: interior-point method (Y. Wu et al., and S. Granville)

global optimizers: global optimum of a RELAXED problem

I 2012: convex relaxation (semidefinite programming)
(J. Lavaei and S. Low)
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Convex relaxations rationale
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Convex relaxations: pros, cons, main findings

I provides a (tight?) lower bound on the NLP problem optimum
I if the duality gap of the convex relaxed problem is zero then

its solution is also the global optimum of the original problem
I else: convex relaxation solution is not physically meaningful

I provides a certificate of problem infeasibility

I the solution obtained with a local optimizer is the global
optimum (or a solution of very high quality) in most cases

I in the vast majority of experiments the relaxation did not
return a feasible solution to the original non-convex problem !

I scalability remains to be proven (despite theoretical
guarantees)

I phylosophical question: one does really need the global
optimum of core NLP of MINLP problems ?
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Numerical results with ULg-GDF Suez methodology

- coded mainly by Dr. Ludovic Platbrood in EU-FP7 PEGASE
- model the whole European transmission system
- 9241-buses and 12000 contingencies
- HPC: BladeCenter, 8 blades, 8 cores per blade, 2.6 Ghz clock rate
- overall time (with from the scratch assumptions): 65 minutes

computation time (s)
iteration variables constraints cont core security network

optimizer analysis compression

1 23000 50000 0 70 130 60

2 30000 64000 23 485 130 140

3 33000 70000 37 940 130 140

4 34000 72000 40 710 130 0

2205 520 340
57 % 13 % 9 %
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Conventional AC SCOPF: conclusions

I major progress on AC SCOPF methodologies reported
I AC SCOPF is computationally demanding

I but still scalable to large systems and sets of contingencies
I rely on local optimizers (e.g. KNITRO, IPOPT) for NLP core
I convergence reliability of core optimizers should be improved

I under stringent running time requirements (up to one hour):
I quality of solution (i.e. sub-optimality gap of the MINLP)

is less important than feasibility (wrt the contingencies)
I need fast heuristics for the management of discrete variables

I ... BUT IT DOES NOT FULLY FIT THE TODAY NEED
FOR SUSTAINABILITY (I.E. INTEGRATION OF LARGE
SHARES OF RENEWABLE GENERATION) !

I trilemma: economics vs security/reliability vs sustainability
I expand the SCOPF scope: TSO-DSO, multi-period, etc.
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SCOPF under uncertainty
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Approaches to handling uncertainty

I chance-constrainted optimization
I assumes a certain probability distribution of the uncertainty
I enforces that the probability of constraints violation is smaller

than a desired threshold (e.g. 0.05)
I disregards the severity of constraints violation in the low likely

cases
I tractability issues due to the number of sampled uncertainty

scenarios

I robust optimization
I assumes that a probabilistic model of uncertainty is not

available or trusted
I covers security under all uncertainty set realizations
I conservative (but controllable via uncertainty budget)
I binary classification of system states (secure/insecure)
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Definition of the uncertainty set S

I uncertainty due to renewable generation (e.g. wind, solar),
demand response, storage

I uncertainty set: bounded and independent active and reactive
power injections at specified buses

S = {(Pui ,Qui )|Pmin
ui ≤ Pui ≤ Pmax

ui ,

Qmin
ui ≤ Qui ≤ Qmax

ui ,

Pmin
u ≤

∑
cPiPui ≤ Pmax

u ,

Qmin
u ≤

∑
cQiQui ≤ Qmax

u

cPi ∈ {0, 1}, cQi ∈ {0, 1},
∀i ∈ N }
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Robust optimization approach stemming from the
EU FP7 PEGASE project

[1] F. Capitanescu, S. Fliscounakis, P. Panciatici, L. Wehenkel
Cautious operation planning under uncertainties. IEEE Transactions on Power
Systems 27 (4) 2012, pp. 1859-1869.
[2] F. Capitanescu, L. Wehenkel
Computation of worst operation scenarios under uncertainty for static security
management. IEEE Transactions on Power Systems 28 (2) 2013, pp.
1697-1705.
[3] S. Fliscounakis, P. Panciatici, F. Capitanescu, L. Wehenkel
Contingency ranking with respect to overloads in very large power systems
taking into account uncertainty, preventive and corrective actions. IEEE
Transactions on Power Systems 28 (4) 2013, pp. 4909-4017.
[4] P. Panciatici et al.

Security management under uncertainty: from day-ahead planning to intraday

operation. IREP Symposium, Buzios (Brazil), 2010
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General framework of the robust optimization
approach

I CHECK whether, given the assumed uncertainty set, the worst
case with respect to each contingency is controllable by
appropriate preventive/corrective actions

I if needed determine WHICH common strategic actions should
be taken to cover the uncontrollable worst-cases

I add a new stage in the day-ahead decision making process:
I (strategic) slow preventive actions (e.g. starting up some

power plants, postponing maintenance works)

besides the typical two stages:
I fast preventive actions (e.g. generation rescheduling, phase

shifter actions)
I corrective actions (e.g. generation rescheduling, network

switching, phase shifter actions)
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The principle

compute optimal day-ahead strategic decisions such that:

I whatever the uncertainty pattern in the assumed set

I whatever the postulated contingency

I the best combination of preventive/corrective actions leads
to an acceptable system performance
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General mathematical formulation of the problem

Three-level decision making (up, us
o , and us,k

c ) MINLP
with an infinite number of constraints:

min
up ,us

o ,u
s,k
c

f (up, ũp)

s.t. gs
o(xso ,up,u

s
o) = 0 ∀s ∈ S

hs
o(xso ,up,u

s
o) ≤ 0 ∀s ∈ S

gs,k
c (xs,kc ,up,u

s
o ,u

s,k
c ) = 0 ∀(s, k) ∈ S × K

hs,k
c (xs,kc ,up,u

s
o ,u

s,k
c ) ≤ 0 ∀(s, k) ∈ S × K

up ∈ Up
|us

o − ũo | ≤ ∆uo ∀s ∈ S
|us,k

c − us
o | ≤ ∆uc ∀(s, k) ∈ S × K

Up is the set of strategic actions (e.g. units start-up)
S is the set of scenarios and K is the set of contingencies
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Worst-case wrt a contingency: problem formulation

max
s,r

1T r

s.t. smin ≤ s ≤ smax

r ≤ r?c

1T r?c = min
u0,uc,rc

1T rc

s.t. g0(x0,u0, s) = 0

h0(x0,u0, s) ≤ 0

gc(xc ,u0,uc , s) = 0

hc(xc ,u0,uc , s) ≤ rc

|u0 − ū0| ≤ ∆u0

|uc − u0| ≤ ∆uc

rc ≥ 0

bi-level programming solvers cannot tackle nonlinear problems!
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Flowchart of the algorithm
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SCOPF under uncertainty: conclusions

I anytime algorithm computing at each iteration a more robust
operation plan

I the identification of cases where no strategic action has to be
taken in order to cover all worst-cases

I a heuristic approach to compute the worst-case under
operation uncertainty for a contingency wrt overloads
I the intractable benchmark bi-level worst-case optimization

problem is decomposed into more tractable OPF-like and
SCOPF-like problems which are solved sequentially

I the proposed algorithm is computationally very intensive
I the approach may benefit from modern high-performance

parallel computing architectures
I look at more efficient constraint relaxation schemes
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Risk-based SCOPF
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Toward more flexible security criteria

I the scope of the deterministic (N-1) security criterion
I simple, clear
I however, too narrowly defined

I it disregards contingencies likelihood of occurrence

I it splits post-contingency states in secure and insecure based
on soft operational limits (e.g. currents and voltages)

I it disregards the consequence of not (fully) securing some
contingencies
I degree/number of constraints violation caused by contingencies
I loss of load

I it ignores the failure of corrective control

I it does not balance in a satisfactory manner economic
savings and risk of not fully securing the system
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Motivations of the proposed RB-SCOPF approach

I simple interpretability of the risk metric
I big(gest) challenge to RB-SCOPF is the estimation of the

consequences of not fully securing all contingencies
I estimating the loss of load due to cascading overload would be

very useful but obtaining meaningful results is (to say the least)
very challenging: big variability of results, models validity, etc.

I acceptability by the operators

I scalability (fostering one day practical adoption by utilities)
I given the limitation of deterministic AC SCOPF

state-of-the-art
I aim at not (much) worsening the computational effort

I idea: focus on prompt load shedding (shifting ?) to replace
the intrinsic difficulties of estimating the loss of load

I RB-SCOPF balancing cost and expected amount of voluntary
load shedding needed to remove overload in allotted time
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Proposed risk metric and constraint

I risk constraint:
∑
k∈K

pk1T (s0 − sk) ≤ riskmax

I drawback: setting the maximum allowed risk (riskmax)

[1] F. Capitanescu
Enhanced risk-based SCOPF formulation balancing operation cost and
expected voluntary load shedding

Electric power systems research, Vol. 128, 2015, pp. 151-155.
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Proposed RB-SCOPF formulation

min
x0,u0,xk ,uk ,sk

f0(x0,u0)

s.t. g0(x0,u0) = 0

h0(x0,u0) ≤ h0

gk(xk ,uk , sk) = 0, k ∈ K

hk(xk ,uk , sk) ≤ c2h0, k ∈ K

|uk − u0| ≤ ∆uk , k ∈ K

s0 − sk ≤ ∆sk , k ∈ K

1T (s0 − sk) ≤ ∆smax, k ∈ K∑
k∈K

pk1T (s0 − sk) ≤ riskmax
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Impact of the maximum allowed risk level and
short-term limits
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RB-SCOPF conclusions

I research area insufficiently explored
I immense potential for scalable algorithms development

I build upon existing deterministic SCOPF scalable
methodologies

I properly formulation of RB-SCOPF to take advantage of these
scalable methodologies

I pay attention to a larger scope (e.g. short-term limits)

I set the ground for tackling risk-based SCOPF under
uncertainty

I acceptability by operators given the arbitrariness of
probabilities assigned to contingencies ?

Seminar Delft, April 20-th, 2018 43



Conclusions and challenges ahead

I risk-based AC SCOPF and AC SCOPF under uncertainty are
in their infancy

I more flexible decision making process balancing risk and
uncertainty, adapted to a smart sustainable grid environment

I develop the first generation of tractable risk-based AC SCOPF
under uncertainty tools
I immense potential for new frameworks and scalable algorithms

I improving operation flexibility shifting more the control
balance from preventive control to corrective control

I extend the risk-based AC SCOPF under uncertainty to:
I TSO-DSO interfaces (production migrates from TS to DS)
I multi-periods (to account for energy-based behaviours:

demand response, storage)
I problem size explodes:

contingencies × uncertainty scenarios × multi-period × DS

I need faster look-ahead SCOPF algorithms close to real time
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