

Challenges Ahead
Risk-Based
AC Security-Constrained Optimal Power Flow
Under Uncertainty
for Smart Sustainable Power Systems

Florin Capitanescu

Sustainable Energy Systems (SES) Research Group Environmental Research and Innovation (ERIN) Department Luxembourg Institute of Science and Technology (LIST)

Seminar Delft, April 20-th, 2018

LUXEMBOURG TITUTE OF SCIENCE AND TECHNOLOGY

Outline of the presentation

- (Day-ahead) decision making in power systems
- Conventional security-constrained optimal power flow (SCOPF)
 - Uses, problem formulation and features
 - Some challenges to SCOPF problem solution
 - Methodologies to reduce the huge problem size
 - Methods for the core optimizer (local vs convex relaxations)
- SCOPF under uncertainty
 - Robust optimization approach
- Risk-based SCOPF
- Conclusions and outlook

Stages of decision making in power systems

Stages of decision making in power systems

- grid planning (years ahead of operation)
 - accurate optimization tools with no special solution time constraints
- grid maintenance planning (years/months ahead of operation)
 - accurate optimization tools with no special solution time constraints
- operational planning (day-ahead of operation)
 - accurate optimization tools with stringent solution time constraints (few minutes to one hour)
- real-time operation
 - very fast optimization tools using reasonable approximate models (solution desired between few seconds and 15 minutes)

- ▶ aim: for each anticipated state of the next day the system must operate at minimum cost while being able to withstand the loss of any single equipment (N-1 security criterion)
 - ensure a **stable** transition towards a **viable equilibrium point**

- aim: for each anticipated state of the next day the system must operate at minimum cost while being able to withstand the loss of any single equipment (N-1 security criterion)
 - ensure a stable transition towards a viable equilibrium point

- very complex optimization problem:
 - multi-period optimization (solution coupled over 24 hours including usually 24/48 states)
 - very large scale (consider a large number of contingencies)
 - nonlinear algebraic and differential equations (model the system behaviour for postulated contingencies)
 - with a large number of variables (binary, discrete, and continuous)
 - stringent solution time requirements (less than 1 hour)!

problem decomposition in sequential sub-problems (trade off economics/affordability and security/reliability):

- (market-based) unit commitment: determines the status on/off of generators for each period of time and the generators active power according to their bids
 - very large MILP problem

problem decomposition in sequential sub-problems (trade off economics/affordability and security/reliability):

- (market-based) unit commitment: determines the status on/off of generators for each period of time and the generators active power according to their bids
 - very large MILP problem
- ► SCOPF: determines cost-optimal preventive/corrective control actions to satisfy static security constraints (thermal & voltages) for the 24 anticipated operation states of the power system for the next day
 - very large MINLP problem

problem decomposition in sequential sub-problems (trade off economics/affordability and security/reliability):

- (market-based) unit commitment: determines the status on/off of generators for each period of time and the generators active power according to their bids
 - very large MILP problem
- ► SCOPF: determines cost-optimal preventive/corrective control actions to satisfy static security constraints (thermal & voltages) for the 24 anticipated operation states of the power system for the next day
 - very large MINLP problem
- time-domain (dynamic) simulation: check system stability for the postulated contingencies
 - numerical integration of dynamic phenomena with different time scales (e.g. miliseconds to minutes)

Conventional (deterministic) SCOPF

SCOPF uses

- essential tool in power systems planning, operational planning and real-time
- part of Energy Management System (EMS) in control centers (together with state estimation, time domain simulation, etc.)
- in some systems the SCOPF is used to price electricity by means of locational marginal prices (LMPs)
 - uses a linear (DC) grid model since solution must be provided in real-time (i.e. few minutes)

Conventional (deterministic) SCOPF formulation

$$\begin{aligned} & \min_{\mathbf{x}_0,\dots,\mathbf{x}_c,\mathbf{u}_0,\dots,\mathbf{u}_c} f(\mathbf{x}_0,\mathbf{u}_0) \\ \text{s.t.} & & \mathbf{g}_0(\mathbf{x}_0,\mathbf{u}_0) = \mathbf{0} & \leftarrow \text{ base case constraints} \\ & & \mathbf{h}_0(\mathbf{x}_0,\mathbf{u}_0) \leq \mathbf{0} & \leftarrow \text{ base case constraints} \\ & & \mathbf{g}_k(\mathbf{x}_k,\mathbf{u}_k) = \mathbf{0} & k = 1,\dots,c & \leftarrow \text{ contingency } k \text{ constraints} \\ & & \mathbf{h}_k(\mathbf{x}_k,\mathbf{u}_k) \leq \mathbf{0} & k = 1,\dots,c & \leftarrow \text{ contingency } k \text{ constraints} \\ & & |\mathbf{u}_k - \mathbf{u}_0| \leq \Delta \mathbf{u}_k^{max} & k = 1,\dots,c & \leftarrow \text{ "coupling" constraints} \end{aligned}$$

- \mathbf{x} state/dependent variables: magnitude V and angle θ of complex voltage at all buses
- u continuous and discrete control variables: generator active power, terminal voltage, transformer ratio, phase shifter angle, shunt capacitors/reactors reactive power

Preventive and corrective modes; OPF vs SCOPF

Features and challenges of the SCOPF problem

- nonlinear: includes power flow equations and other nonlinear inequality constraints
- **non-convex:** includes power flow equations and bounds on other nonlinear inequality constraints
- with continuous and discrete variables
- static: refers to a single operating point in time
- large scale: the SCOPF problem for a 3000-bus system and 999 contingencies contains:

```
around 2000 \times 3000 = 6.000.000 equality constraints
around 6000 \times 3000 = 18.000.000 inequality constraints
around 1000 \times 3000 = 3.000.000 control variables
```

Features and challenges of the SCOPF problem

- nonlinear: includes power flow equations and other nonlinear inequality constraints
- non-convex: includes power flow equations and bounds on other nonlinear inequality constraints
- with continuous and discrete variables
- static: refers to a single operating point in time
- ▶ large scale: the SCOPF problem for a 3000-bus system and 999 contingencies contains:

```
around 2000 \times 3000 = 6.000.000 equality constraints around 6000 \times 3000 = 18.000.000 inequality constraints around 1000 \times 3000 = 3.000.000 control variables
```

- academia simplifies SCOPF to a large scale MINLP
- ▶ intractable on a normal computer due to memory limitation !
- scalable decomposition is essential as a limited number of constraints are binding

SCOPF decoupling: active power vs. reactive power

Under **normal operating conditions** generally:

- active power flows are weakly coupled with voltage magnitudes V
- ightharpoonup reactive power flows are weakly coupled with voltage angles heta

	active power	reactive power			
	generator active power	generator terminal voltage			
	phase shifter angle	transformer ratio			
control	MW scheduled transfers	shunt reactor/capacitor			
variables	network topology load curtailment generator start-up/shut-down				
constraints	branch current	voltage limits			
	active power flows	reactive power flows			
objective	min generation cost	min power losses			
function	min controls deviation	max reactive power reserves			

SCOPF decomposition methodology

SCOPF problem decomposition: state-of-the-art

- Most severe contingencies together (Brian Stott and Ongun Alsac, since 1974)
- Benders decomposition for preventive-corrective SCOPF (A. Monticelli, M. Pereira, S. Granville - 1987)
- All potentially binding contingencies together (ULg, since 2007)
 - with post-contingency network compresion (ULg/GDF Suez - 2014)
- Adaptive Benders decomposition
 (D. Phan et al. 2014)
- Alternating direction method of multipliers
 (D. Phan et al. 2014)
- ► Along interior-point method structure (Q. Jiang et al. 2014)

SCOPF decomposition: for further reading

[1] F. Capitanescu

Critical review of recent advances and further developments needed in AC optimal power flow, Electric Power Systems Research 136, 57-68

[2] B. Stott, O. Alsac

Optimal power flow - basic requirements for real-life problems and their solutions (White Paper), SEPOPE XII Symposium, Brazil, 2012

[3] L. Platbrood, F. Capitanescu, C. Merckx, H. Crisciu, L. Wehenkel

A Generic Approach for Solving Nonlinear-Discrete Security-Constrained Optimal Power Flow Problems in Large-Scale Systems,

IEEE Trans. Power Syst. 29 (3) (2014) 1194-1203

[4] D. Phan, J. Kalagnanam

Some efficient methods for solving the security-constrained optimal power flow problem,

IEEE Trans. Power Syst. 29 (2) (2014) 863-872

[5] Q. Jiang, K. Xu

A novel iterative contingency filtering approach to corrective security-constrained optimal power flow,

IEEE Trans. Power Syst. 29 (3) (2014) 1099-1109

Solution methods for the NLP core optimizer

If discrete variables are fixed or assumed continuous then SCOPF becomes a nonlinear programming (NLP) problem

local optimizers: (at least) local optimum solution

- ▶ 1968: gradient method (H. Dommel and W. Tinney)
- ▶ 1973: sequential linear programming (O. Alsac and B. Stott)
- ► 1973: sequential quadratic programming (G. Reid and L. Hasdorf)
- ▶ 1984: Newton method (D. Sun et al.)
- ▶ 1994: interior-point method (Y. Wu et al., and S. Granville)

global optimizers: global optimum of a RELAXED problem

2012: convex relaxation (semidefinite programming)(J. Lavaei and S. Low)

Convex relaxations rationale

Convex relaxations: pros, cons, main findings

- provides a (tight?) lower bound on the NLP problem optimum
- ▶ if the duality gap of the convex relaxed problem is zero then its solution is also the global optimum of the original problem
 - lack else: convex relaxation solution is not physically meaningful
- provides a certificate of problem infeasibility
- the solution obtained with a local optimizer is the global optimum (or a solution of very high quality) in most cases

Convex relaxations: pros, cons, main findings

- provides a (tight?) lower bound on the NLP problem optimum
- ▶ if the duality gap of the convex relaxed problem is zero then its solution is also the global optimum of the original problem
 - else: convex relaxation solution is not physically meaningful
- provides a certificate of problem infeasibility
- the solution obtained with a local optimizer is the global optimum (or a solution of very high quality) in most cases
- in the vast majority of experiments the relaxation did not return a feasible solution to the original non-convex problem!
- scalability remains to be proven (despite theoretical guarantees)
- phylosophical question: one does really need the global optimum of core NLP of MINLP problems ?

Numerical results with ULg-GDF Suez methodology

- coded mainly by Dr. Ludovic Platbrood in EU-FP7 PEGASE
- model the whole European transmission system
- 9241-buses and 12000 contingencies
- HPC: BladeCenter, 8 blades, 8 cores per blade, 2.6 Ghz clock rate
- overall time (with from the scratch assumptions): **65 minutes**

			computation time (s)			
iteration	variables	constraints	cont	core	security	network
		· 		optimizer	analysis	compression
1	23000	50000	0	70	130	60
2	30000	64000	23	485	130	140
3	33000	70000	37	940	130	140
4	34000	72000	40	710	130	0
				2205	520	340
				57 %	13 %	9 %

Conventional AC SCOPF: conclusions

- major progress on AC SCOPF methodologies reported
- AC SCOPF is computationally demanding
 - but still scalable to large systems and sets of contingencies
 - rely on local optimizers (e.g. KNITRO, IPOPT) for **NLP** core
 - convergence reliability of core optimizers should be improved
- under stringent running time requirements (up to one hour):
 - quality of solution (i.e. sub-optimality gap of the MINLP) is less important than feasibility (wrt the contingencies)
 - need fast heuristics for the management of discrete variables

Conventional AC SCOPF: conclusions

- major progress on AC SCOPF methodologies reported
- AC SCOPF is computationally demanding
 - but still scalable to large systems and sets of contingencies
 - rely on local optimizers (e.g. KNITRO, IPOPT) for **NLP** core
 - convergence reliability of core optimizers should be improved
- under stringent running time requirements (up to one hour):
 - quality of solution (i.e. sub-optimality gap of the MINLP)
 is less important than feasibility (wrt the contingencies)
 - need fast heuristics for the management of discrete variables
- ... BUT IT DOES NOT FULLY FIT THE TODAY NEED FOR SUSTAINABILITY (I.E. INTEGRATION OF LARGE SHARES OF RENEWABLE GENERATION)!
- trilemma: economics vs security/reliability vs sustainability
 - expand the SCOPF scope: TSO-DSO, multi-period, etc.

SCOPF under uncertainty

Approaches to handling uncertainty

- chance-constrainted optimization
 - assumes a certain probability distribution of the uncertainty
 - enforces that the probability of constraints violation is smaller than a desired threshold (e.g. 0.05)
 - disregards the severity of constraints violation in the low likely cases
 - tractability issues due to the number of sampled uncertainty scenarios
- robust optimization
 - assumes that a probabilistic model of uncertainty is not available or trusted
 - covers security under all uncertainty set realizations
 - conservative (but controllable via uncertainty budget)
 - binary classification of system states (secure/insecure)

Definition of the uncertainty set \mathcal{S}

- uncertainty due to renewable generation (e.g. wind, solar), demand response, storage
- uncertainty set: bounded and independent active and reactive power injections at specified buses

$$\begin{split} \mathcal{S} &= \{(P_{ui}, Q_{ui}) | P_{ui}^{\text{min}} \leq P_{ui} \leq P_{ui}^{\text{max}}, \\ Q_{ui}^{\text{min}} &\leq Q_{ui} \leq Q_{ui}^{\text{max}}, \\ P_{u}^{\text{min}} &\leq \sum c_{Pi} P_{ui} \leq P_{u}^{\text{max}}, \\ Q_{u}^{\text{min}} &\leq \sum c_{Qi} Q_{ui} \leq Q_{u}^{\text{max}}, \\ c_{Pi} &\in \{0,1\}, \quad c_{Qi} \in \{0,1\}, \\ \forall i \in \mathcal{N} \ \} \end{split}$$

Robust optimization approach stemming from the EU FP7 PEGASE project

[1] F. Capitanescu, S. Fliscounakis, P. Panciatici, L. Wehenkel

Cautious operation planning under uncertainties. IEEE Transactions on Power Systems 27 (4) 2012, pp. 1859-1869.

[2] F. Capitanescu, L. Wehenkel

Computation of worst operation scenarios under uncertainty for static security management. IEEE Transactions on Power Systems 28 (2) 2013, pp. 1697-1705

[3] S. Fliscounakis, P. Panciatici, F. Capitanescu, L. Wehenkel

Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive and corrective actions. IEEE Transactions on Power Systems 28 (4) 2013, pp. 4909-4017.

[4] P. Panciatici et al.

Security management under uncertainty: from day-ahead planning to intraday operation. IREP Symposium, Buzios (Brazil), 2010

General framework of the robust optimization approach

- CHECK whether, given the assumed uncertainty set, the worst case with respect to each contingency is controllable by appropriate preventive/corrective actions
- ▶ if needed determine WHICH common strategic actions should be taken to cover the uncontrollable worst-cases
- add a new stage in the day-ahead decision making process:
 - (strategic) slow preventive actions (e.g. starting up some power plants, postponing maintenance works)

besides the typical two stages:

- fast preventive actions (e.g. generation rescheduling, phase shifter actions)
- corrective actions (e.g. generation rescheduling, network switching, phase shifter actions)

The principle

compute optimal day-ahead **strategic decisions** such that:

- whatever the uncertainty pattern in the assumed set
 - whatever the postulated contingency
 - ▶ the best combination of **preventive/corrective actions** leads to an acceptable system performance

General mathematical formulation of the problem

Three-level decision making $(\mathbf{u}_p, \mathbf{u}_o^s, \text{ and } \mathbf{u}_c^{s,k})$ MINLP with an infinite number of constraints:

 \mathcal{U}_p is the set of strategic actions (e.g. units start-up) ${\mathcal S}$ is the set of scenarios and ${\mathcal K}$ is the set of contingencies

Worst-case wrt a contingency: problem formulation

$$\begin{split} \max_{s,r} \mathbf{1}^T r \\ \text{s.t. } \mathbf{s}^{\text{min}} &\leq \mathbf{s} \leq \mathbf{s}^{\text{max}} \\ r &\leq r_c^\star \\ \mathbf{1}^T r_c^\star = \min_{u_0, u_c, r_c} \\ \text{s.t. } & \mathbf{g}_0(x_0, u_0, \mathbf{s}) = \mathbf{0} \\ h_0(x_0, u_0, \mathbf{s}) &\leq \mathbf{0} \\ \mathbf{g}_c(x_c, u_0, u_c, \mathbf{s}) &\leq \mathbf{0} \\ h_c(x_c, u_0, u_c, \mathbf{s}) &\leq r_c \\ |u_0 - \overline{u}_0| &\leq \Delta u_0 \\ |u_c - u_0| &\leq \Delta u_c \\ r_c &> \mathbf{0} \end{split}$$

Flowchart of the algorithm

SCOPF under uncertainty: conclusions

- anytime algorithm computing at each iteration a more robust operation plan
- the identification of cases where no strategic action has to be taken in order to cover all worst-cases
- a heuristic approach to compute the worst-case under operation uncertainty for a contingency wrt overloads
 - the intractable benchmark bi-level worst-case optimization problem is decomposed into more tractable OPF-like and SCOPF-like problems which are solved sequentially
- the proposed algorithm is computationally very intensive
- the approach may benefit from modern high-performance parallel computing architectures
 - look at more efficient constraint relaxation schemes

Risk-based SCOPF

Toward more flexible security criteria

- ▶ the scope of the deterministic (N-1) security criterion
 - simple, clear
 - however, too narrowly defined
- it disregards contingencies likelihood of occurrence
- it splits post-contingency states in secure and insecure based on soft operational limits (e.g. currents and voltages)
- it disregards the consequence of not (fully) securing some contingencies
 - degree/number of constraints violation caused by contingencies
 - loss of load
- it ignores the failure of corrective control
- it does not balance in a satisfactory manner economic savings and risk of not fully securing the system

Motivations of the proposed RB-SCOPF approach

- simple interpretability of the risk metric
 - big(gest) challenge to RB-SCOPF is the estimation of the consequences of not fully securing all contingencies
 - estimating the loss of load due to cascading overload would be very useful but obtaining meaningful results is (to say the least) very challenging: big variability of results, models validity, etc.
 - acceptability by the operators
- scalability (fostering one day practical adoption by utilities)
 - given the limitation of deterministic AC SCOPF state-of-the-art
 - aim at not (much) worsening the computational effort
- ▶ idea: focus on prompt load shedding (shifting ?) to replace the intrinsic difficulties of estimating the loss of load
- ► RB-SCOPF balancing cost and expected amount of voluntary load shedding needed to remove overload in allotted time

Proposed risk metric and constraint

- risk constraint: $\sum_{k \in K} p_k \mathbf{1}^T (\mathbf{s}_0 \mathbf{s}_k) \leq \operatorname{risk}_{\max}$
- ▶ drawback: setting the maximum allowed risk (risk_{max})

[1] F. Capitanescu

Enhanced risk-based SCOPF formulation balancing operation cost and expected voluntary load shedding

Electric power systems research, Vol. 128, 2015, pp. 151-155.

Proposed RB-SCOPF formulation

$$\begin{aligned} & \underset{\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_k, \mathbf{u}_k, \mathbf{s}_k}{\min} f_0(\mathbf{x}_0, \mathbf{u}_0) \\ & \text{s.t. } \mathbf{g}_0(\mathbf{x}_0, \mathbf{u}_0) = \mathbf{0} \\ & \mathbf{h}_0(\mathbf{x}_0, \mathbf{u}_0) \leq \overline{\mathbf{h}}_0 \\ & \mathbf{g}_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{s}_k) = \mathbf{0}, & k \in K \\ & \mathbf{h}_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{s}_k) \leq c_2 \overline{\mathbf{h}}_0, & k \in K \\ & |\mathbf{u}_k - \mathbf{u}_0| \leq \Delta \mathbf{u}_k, & k \in K \\ & \mathbf{1}^T(\mathbf{s}_0 - \mathbf{s}_k) \leq \Delta \mathbf{s}^{\max}, & k \in K \\ & \sum_{k \in K} p_k \mathbf{1}^T(\mathbf{s}_0 - \mathbf{s}_k) \leq \operatorname{risk}_{\max} \end{aligned}$$

Impact of the maximum allowed risk level and short-term limits

RB-SCOPF conclusions

- research area insufficiently explored
- immense potential for scalable algorithms development
 - build upon existing deterministic SCOPF scalable methodologies
 - properly formulation of RB-SCOPF to take advantage of these scalable methodologies
- pay attention to a larger scope (e.g. short-term limits)
- set the ground for tackling risk-based SCOPF under uncertainty
- acceptability by operators given the arbitrariness of probabilities assigned to contingencies ?

Conclusions and challenges ahead

- risk-based AC SCOPF and AC SCOPF under uncertainty are in their infancy
- more flexible decision making process balancing risk and uncertainty, adapted to a smart sustainable grid environment
- develop the first generation of tractable risk-based AC SCOPF under uncertainty tools
 - immense potential for new frameworks and scalable algorithms
- improving operation flexibility shifting more the control balance from preventive control to corrective control
- extend the risk-based AC SCOPF under uncertainty to:
 - ► TSO-DSO interfaces (production migrates from TS to DS)
 - multi-periods (to account for energy-based behaviours: demand response, storage)
 - problem size explodes: contingencies × uncertainty scenarios × multi-period × DS
- need faster look-ahead SCOPF algorithms close to real time